Organisation de la cellule

Dr Pauline Neveu

Plan: « Organisation de la cellule »

- 1. Notion de cellule
- 2. Microscopie
- 3. Cellule bactérienne
- 4. Cellule archéenne
- 5. Cellule eucaryote
- 6. Virus

1. Notion de cellule

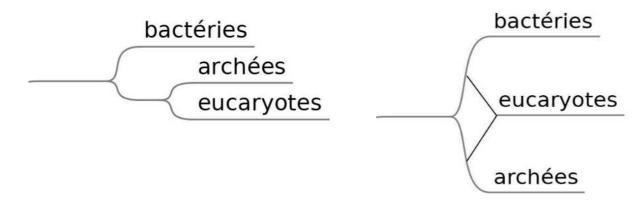
→ unité fondamentale du vivant

-tous les êtres vivants sont composés de cellule(s) (théorie cellulaire (Schleiden 1838, Schwann 1839))

-toute cellule provient de cellule(s) pré-existante(s) (absence de génération spontanée (Virchow 1858, Pasteur 1862) : enrichissement théorie cellulaire)

1. Notion de cellule

2 types d'organisations structurales des cellules :


-structure procaryote →cas des archées

premières cellules : 3.5 milliards d'années, certitude à 2.8 milliards d'années simplicité structurale, complexité métabolique

→cas des eucaryotes -structure eucaryote

complexité structurale, complexité métabolique

→ ne reflètent pas les relations phylogénétiques

1. Notion de cellule

Comparaison succincte des deux types de structures :

-structure procaryote

- cytoplasme
- → information génétique (ADN)
- ribosomes (synthèse des protéines)
- cytosquelette

- -structure eucaryote
 - compartiments intracellulaires délimités par des membranes (organites)
 - -noyau (pro- et eu- et -caryote caryon=noyau) renfermant l'ADN
 - -réticulum endoplasmique
 - -appareil de Golgi
 - -mitochondries
 - -chloroplastes...

Cellules des trois domaines du vivant :

- -cellule bactérienne
- -cellule archéenne
- -cellule eucaryote

2. Microscopie

Œil humain: -résolution: 0.1mm

-grossissement: 1

Microscopie optique ou photonique

- -cellules vivantes ou mortes
- -photons lumière visible (photons traversent coupe)
- -résolution : 0.2µm
- -grossissement: 1500 fois

MET : Microscopie Électronique à Transmission

- -cellules mortes
- -électrons (électrons traversent coupe)
- -résolution : 0.2nm (2 à 1nm)
- -grossissement : millions de fois

Peter Highton / CC0 https://commons.wikimedia.org/wiki/File:E.coli image.jpg

Y tambe / CC BY-SA

(https://creativecommons. org/licenses/by-sa/3.0)

MEB: Microscopie Électronique à balayage

- -cellules mortes
- -électrons (électrons balaient coupe)
- -résolution : 10nm
- -grossissement : millions de fois

Elapied at French Wikipedia / Public domain https://commons.wikimedia.org/wiki/File:Coli3.jpg

Millimètre (mm) : 10⁻³m Micromètre (µm) : 10⁻⁶m Nanomètre (nm): 10⁻⁹m Angström (Å): 10⁻¹⁰m (diamètre atome hydrogène) Picomètre (pm): 10⁻¹²m

Centimètre (cm) : 10⁻²m

Oak tree road 1 / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

Préparation: fixation, inclusion, coupe, coloration, montage (microtome)

2. Microscopie

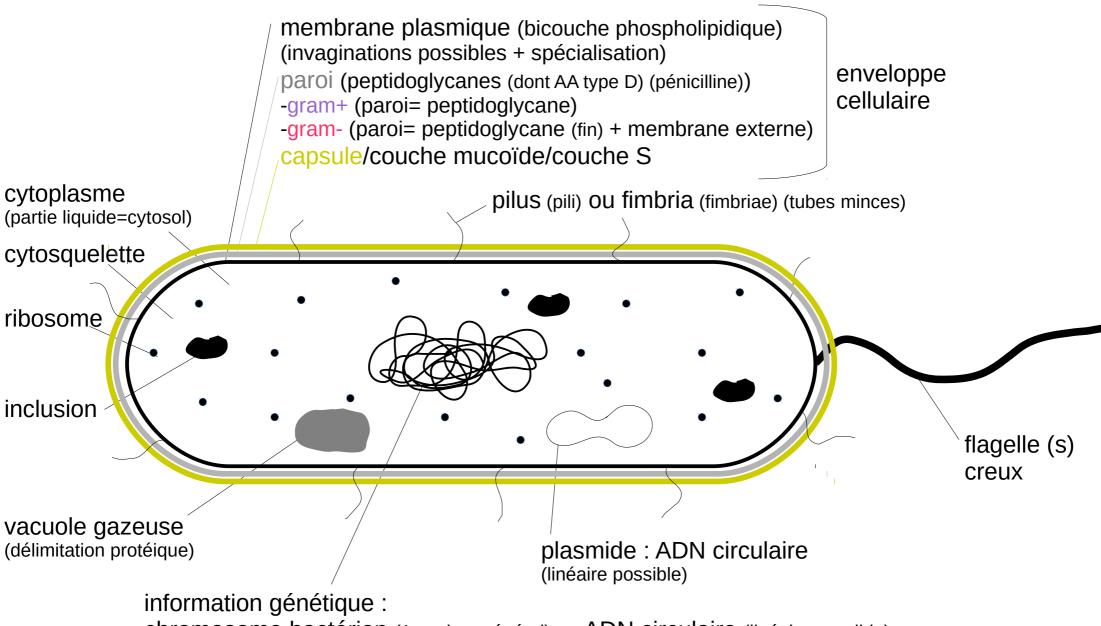
Dimensions:

- -bactéries micromètre -archées
- -eucaryotes → dizaine de micromètres

Rapport surface (m²)/volume (m³):

- -échanges milieu extérieur
- -transmission d'un lieu à un autre dans la cellule
- → maximisé (allongement, aplatissement, plissement)

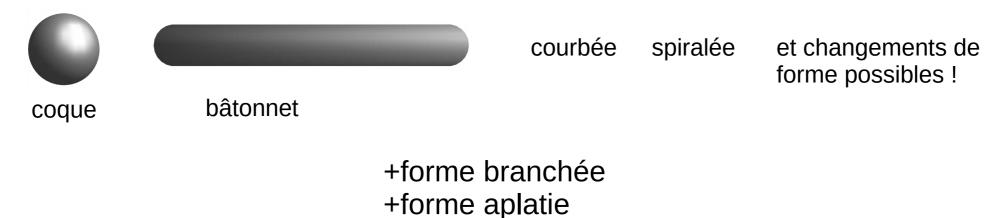
3. Cellule bactérienne


Diversité des bactéries (µm):

-forme cellulaire

- -vie isolée ou en colonie
- -production d'endospore (sporulation puis retour à vie végétative)

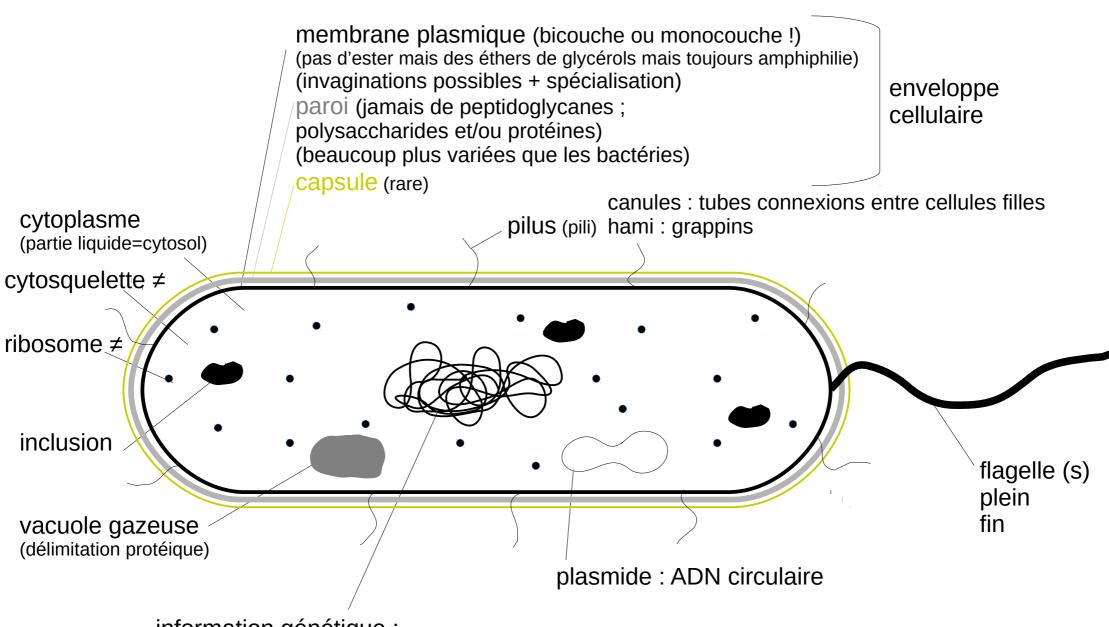
3. Cellule bactérienne



chromosome bactérien (1 seul en général) = ADN circulaire (linéaire possible) localisée dans zone appelée nucléoïde

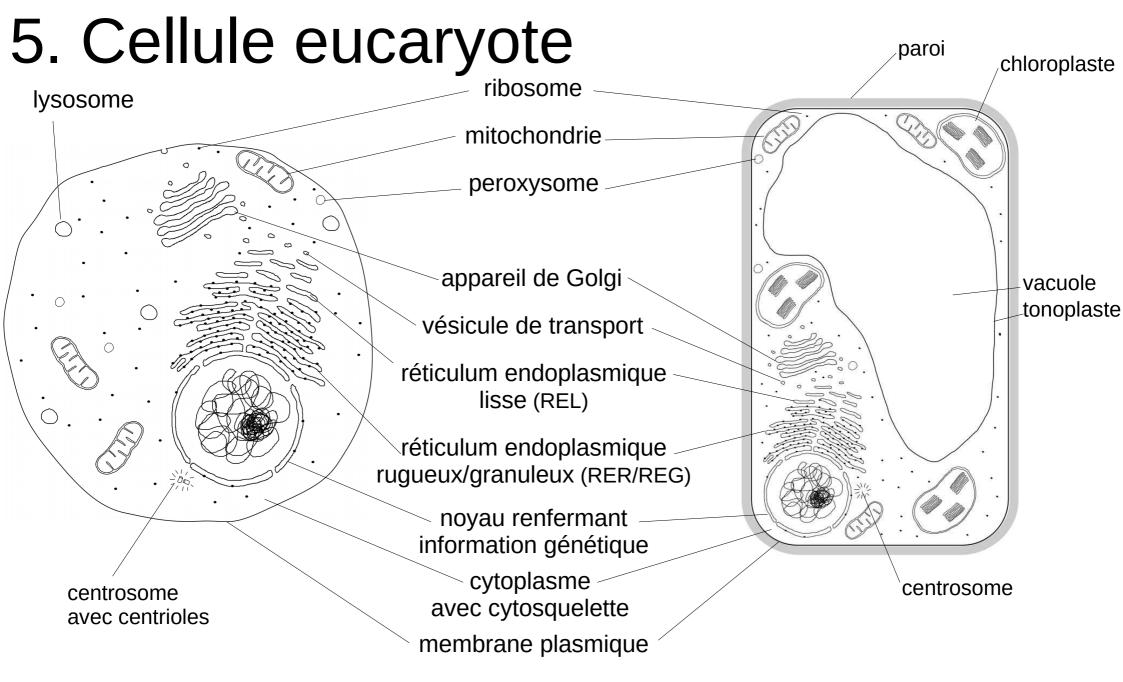
4. Cellule archéenne

Diversité des archées (µm):


-forme cellulaire

-vie isolée ou en colonie

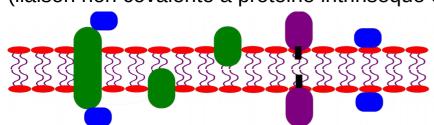
-beaucoup sont extrémophiles

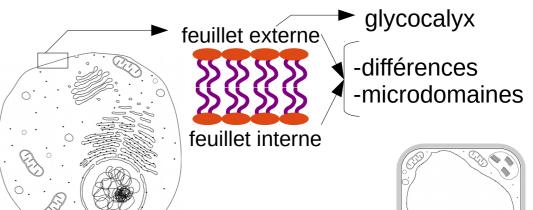

4. Cellule archéenne

information génétique : chromosome archéen (1 seul en général) = ADN circulaire localisée dans zone appelée nucléoïde

Diversité des eucaryotes:

- -plus grandes (10µm) que les bactéries (µm) et archées (µm)
- -forme : grande diversité morphologique
- -mode de vie : isolé (unicellulaire), colonies, pluricellulaires
- -complexité structurale
 - → cloisonnement dû aux membranes
 - → **Organites** (structures intracellulaires aux fonctions spécifiques)

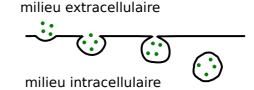



Membrane plasmique:

- -bicouche phospholipidique
- -autour : matrice extracellulaire (MEC) → paroi (ex : végétaux)
- -protéines membranaires (libre ou contrainte ; évolution/environnement): (enzymatique, réception (ligand), transport, adhérence)
 - -intrinsèques
 - -intramembranaires (partie insérée dans la membrane)
 - -transmembranaires (traversent membrane de part en part)
 - -non transmembranaires (ne traversent pas membrane de part en part)
 - -ancrées (liaison covalente à lipide membranaire)

-extrinsèques / périphériques

(liaison non covalente à protéine intrinsèque ou lipide membranaire)

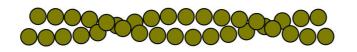

- -échanges
 - -directement à travers la membrane (gaz & molécules hydrophobes passent ; molécules polaires & chargées ne passent pas)
 - → diffusion simple (selon gradient concentration : du +concentré vers -concentré ; passif)
 - -protéines de transport
 - -Sélectives (unique substance ou plusieurs substances apparentées)
 - -contrôle possible (électrique/canal voltage-dépendant ; chimique/canal chimio-dépendant)
 - -petites molécules (ni polysaccharides, ni di/triacylglycérols, ni (poly-)nucléotides, ni>3AA)
 - → diffusion facilitée (selon gradient concentration ; passif)
 - \rightarrow pour l'eau : osmose (aquaporines)
 - → transport actif (contre gradient concentration ; énergie)
 - -transport vésiculaire (transport en vrac)
 - -macromolécules (unique substance ou plusieurs substances apparentées)
 - -consommateur d'énergie

-spécifique

pinocytose endocytose par récepteurs phagocytose

-2 sens : -endocytose (→ entrée dans cellulé)

-exocytose (← sortie de la cellule)

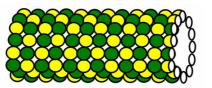


Cytoplasme (entre membrane plasmique et noyau):

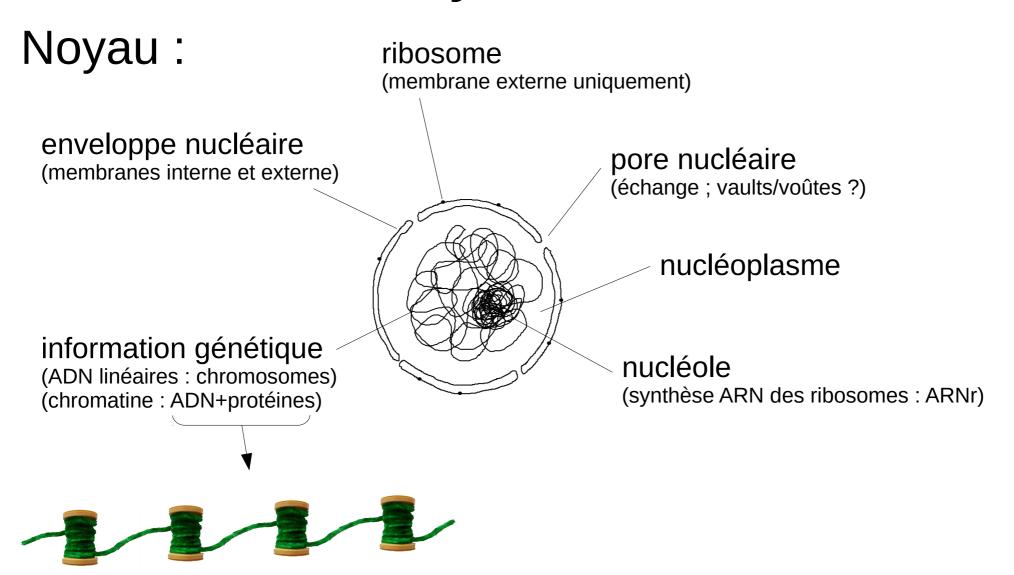
- -cytosol (portion liquide ; réactions biochimiques)
- -inclusions (glycogène, triacylglycérols)
- -Organites (noyau, réticulum, Golgi, lysosomes, peroxysomes, mitochondries, chloroplastes)
- -ribosomes (synthèse protéines ; ≠bactéries, ≠ archées)
- -protéasome (dégradation protéines marquées par l'ubiquitine)
- -cytosque lette (système squeletto-moteur de la cellule ; filaments protéiques ; échafaudage)
 - -microfilaments (\$\pi7nm)
 - -filaments intermédiaires (\square)
 - -microtubules (\alpha25nm et lumière de \alpha15nm)

zoom:

-microfilaments


- -protéines d'actine Globuleuses polymérisées en actine Fibreuse en hélice
- -peuvent former des réseaux
- -protéines motrices associées : myosines
- -soutien membrane plasmique et expansions (microvillosités, pseudopodes, filipodes, lamellipodes et mouvement amiboïde), cytodiérèse, déplacement organites, contraction musculaire

-filaments intermédiaires



- -grande diversité (kératines, desmine, vimentine, neurofilaments...)
- -pas de protéine motrice associée
- -rôle passif : maintien forme cellulaire, amarrage d'organites

-microtubules

- -dimères protéiques de tubulines alpha et bêta formant des cylindres creux
- -protéines motrices associées : dynéines et kinésines
- -transport à grande distance (rails), fuseau de division cellulaire, cils et flagelles (coupe transversale)
- -centrosome : structure organisatrice des microtubules

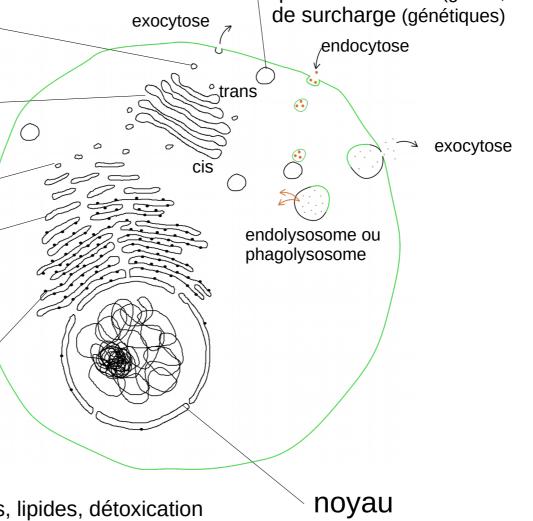
5. Cellule eucaryote Système endomembranaire

lysosome (absents végétaux, champignons)
-issu RE/Golgi
-concentré d'enzymes en milieu acide
(système digestion : phagolysosomes, autophagie)
-maintien intégrité, involution

vésicule de transition (transport)

-problèmes : fuite (goutte, silicose) ; maladies de surcharge (génétiques)

appareil de Golgi


-empilement sacs aplatis : dictyosomes -stockage, tri, modifications, étiquetage

vésicule de transition (transport)

- RE lisse (réseau saccules sans ribosomes)
- ➤ RE rugueux ou granuleux (réseau saccules avec ribosomes)

réticulum endoplasmique (RE)

- -réseau saccules
- -réactions biochimiques : synthèse glucides, lipides, détoxication
- -production de membranes

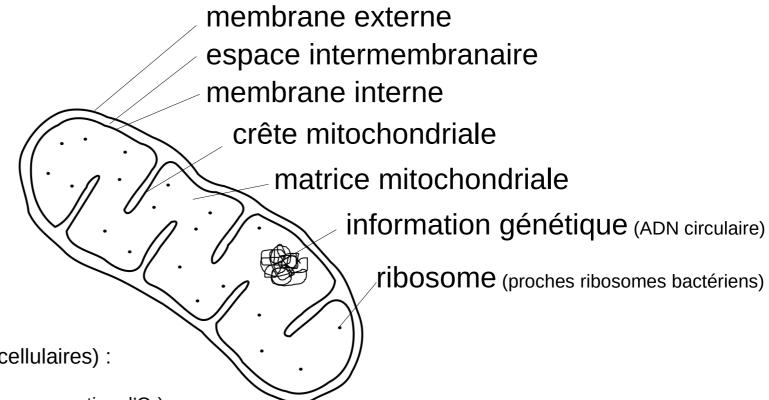
Peroxysomes:

-transformation molécules par transfert H à O₂

 \rightarrow production de peroxyde d'hydrogène H_2O_2 toxique, lui même transformé : $2H_2O_2 \rightarrow O_2 + 2H_2O$ Ex : décomposition lipides ; conversion lipides en glucides (glycoxysomes végétaux)

-origine hybride? RE + mitochondrie

Vacuoles:

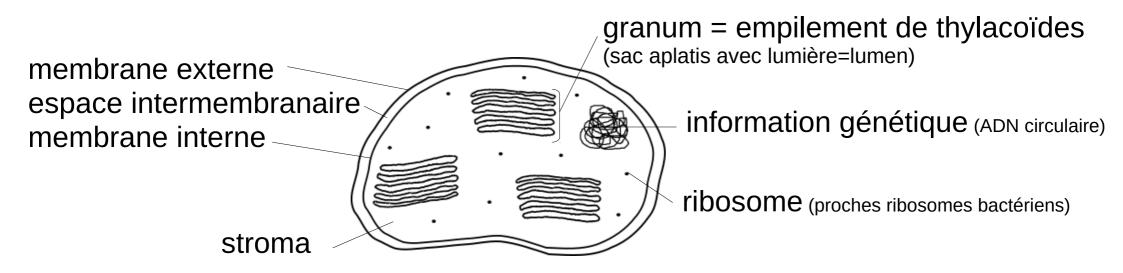

- -végétaux, champignons, unicellulaires
- -origine : RE/Golgi
- -rôles:
 - -de lysosome
 - -stockage (réserves, déchets, pigments, molécules toxiques (tannins, alcaloïdes))
 - -turgescence (« état gonflé d'eau » via mécanismes d'osmose) et port érigé (inverse : plasmolyse : flétrissement)
 - -expulsion d'eau (cas des vacuoles contractiles d'organismes unicellulaires)

Mitochondrie (ou mitochondries aérobies):

-taille d'une bactérie

-centrale(s) énergétique(s) : respiration

(production molécule énergétique universelle : ATP via consommation glucose et O₂)

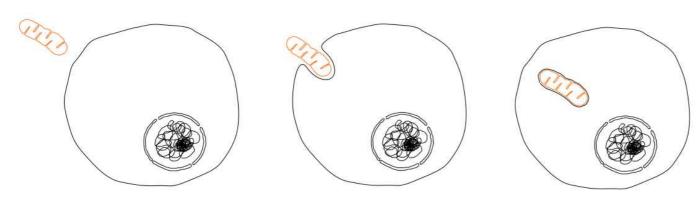


Autres types de mitochondries (unicellulaires) :

- -mitosome (fonction?)
- -mitochondrie anaérobie (ATP sans consommation d'O₂)
- -mitochondrie productrice de H₂ (ATP sans consommation d'O₂, avec production de H₂)
- -hydrogénosome (ATP sans consommation $d'O_2$, avec production de H_2 , sans chaîne de transfert d'électrons)

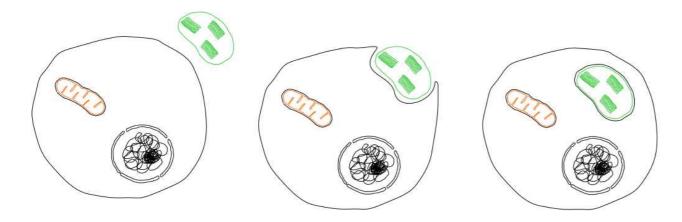
Chloroplastes

- -cellules végétales, unicellulaires
- -taille d'une bactérie
- **-photosynthèse** (végétaux : production sucres et O₂ à partir CO₂, H₂O et énergie lumineuse)



Autres types de plastes :

- -leucoplastes (synthèse acides gras, acides aminés...; réserves (amidon dans les amyloplastes, lipides dans les oléoplastes, protéines dans les protéinoplastes))
- -chromoplastes (pigments, ex : caroténoïdes couleur fleurs et fruits)

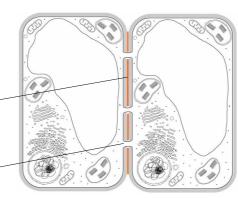

Remarque : certains groupes d'organismes possèdent des plastes à 3 ou 4 membranes

Théorie endosymbiotique : mitochondries et plastes : bactéries endosymbiotes

ingestion → endosymbiose endosymbiose → obligatoire (transfert gènes vers noyau)

ingestion d'une alphaprotéobactérie par une cellule eucaryote primitive

ingestion d'une cyanobactérie par une cellule eucaryote primitive ayant déjà ingéré une alphaprotéobactérie


Relations entre cellules chez un pluricellulaire

- -via molécules de signalisation (ex : hormones, neurotransmetteurs)
- -via contacts directs entre cellules :

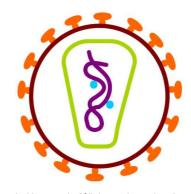
-cellules animales (structures en relation avec cytosquelette intracellulaire (microfilaments ou filaments intermédiaires) via protéines membranaires) :

-jonctions étanches ou serrées ou zonula occludens (zip au rôle de barrière entre deux compartiments extracellulaires)

- -jonctions adhérentes ou d'ancrage ou zonula adhaerens (fermeture éclair permettant l'adhérence)
- -desmosomes (bouton pression permettant l'adhérence)
- -jonctions communicantes (gap junctions, nexus)-(canaux intercellulaires pouvant s'ouvrir et se fermer)
- -s'ajoutent les systèmes d'adhésion cellule-MEC :
 - -contacts focaux
 - -hémidesmosomes
- -cellules végétales :
 - -lamelle moyenne (ciment)
 - -plasmodesmes (tunnels intercellulaires)

6. Virus

- -organisation acellulaire
- -agents pathogènes: parasites intracellulaires obligatoires (ni métabolisme ni multiplication seuls : assurés par hôte)
 - -2 formes:
 - -forme extracellulaire inactive
 - -forme intracellulaire active
 - -différents hôtes :
 - -bactéries : bactériophages ou phages ou virus bactériens
 - -archées : virus archéens
 - -eucaryotes : virus eucaryotes


6. Virus

Particule virale (virion):

- -information génétique (linéaire/circulaire ; segmentation possible) : nucléocapside
 - -ADN simple brin
 - -ADN double brin (+fréquent)
 - -ARN simple brin (+fréquent)
 - -ARN double brin

- -coque protéique : capside (3 types : hélicoïdale, icosaédrique, complexe)
- -enveloppe lipidique issue de l'hôte avec protéines virales :
 - -présente : virus enveloppé
 - -absente : virus nu
- -enzymes (inactive) éventuellement

virus de l'immundodéficience humaine (VIH)

Remarque : cycle viral - voir partie biologie moléculaire

6. Virus

Autres agents infectieux acellulaires :

-viroïdes: ARN

-prions: protéines (altération structure tridimensionnelle protéines dans réaction en chaîne)

Fin: « Organisation de la cellule »

Merci de votre attention!

Ne pas oublier pour ce chapitre :

- -la carte mentale
- -« l'audio relaxé »
- -exercices et quiz
- → sur http://drpneveu.free.fr/biologie.html

Chapitre suivant : L'information génétique : nature et transmission conforme